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SURFACE SCIENCE, in press

Theoretical Study of Pulsed-Laser-Induced Resonant Desorption

Sander van Smaalen and Thomas F. George
Departments of Physics & Astronomy and Chemistry

239 Fronczak Hall
State University of New York at Buffalo

Buffalo, New York 14260

Abstract

Adsorbed atoms irradiated by an infrared laser in resonance with one

pair of vibrational levels of the adbond are studied. A pulsed laser is

considered which has pulse duration short compared to the relaxation times

of the system. The equations governing the time evolution of the adbond

under a series of i-pulses are derived. Two criteria are defined to compare

the effects of a series of t-pulses and of a continuous-wave laser. They

are: (1) equal average energy in both lasers and (2) equal average resonant

heating due to both lasers. These criteria are used to compare the effects

of a pulsed laser and a continuous-wave laser on laser-induced resonant

desorption. It is shown that a pulsed laser does not lead to a dramatic

increase of the desorption. In the high-intensity limit, resonance heating For

and desorption reach the same saturation limit for a pulsed laser as for a

continuous-wave laser. Justtification

By

Distrbuitlon/

.%. _AvnilaMilIty Codes

-.,il acnd/oDi
Dist Special

Je



1. Introduction

When a coated surface is irradiated by a laser, the laser frequency can

be chosen such that it is in resonance with one of the transitions of the

adbond. If the substrate is transparent at that frequency, the primary

effect of the laser is to bring the adsorbed particle into an excited state.

In this way, the laser may influence desorption and other surface processes.

Due to the interaction of the adparticle with the substrate degrees of

freedom, relaxation of the excited state will occur. This will limit the

probability of finding the adparticle in an excited state of the adbond.

Also, it means that there is an energy flow from the laser into the

substrate, a process called resonant heating. IIn a previous paper it was

shown that this is in fact the most important process occurring, i.e.,

almost all of the absorbed laser energy is used for heating the substrate

rather than for desorption. 2If the heat conductivity of the substrate is

not large enough to divert the absorbed energy immediately, resonant

absorption will lead to elevated surface temperatures, and consequently will

lead to enhanced desorption. 3In this way the laser indirectly influences

the desorption process.

The resonant effect of laser absorption has been clearly established

"pexperimentally. 38However, it is yet an unresolved question whether laser-

induced resonant desorption or laser-induced thermal desorption via resonant

heating can explain these experiments, 38although there are strong

indications that the experiments can be accounted for, at least partially,

by resonant desorption. In this paper, we shall calculate both desorption

and resonant heating. However, we will consider only direct resonant

desorption, i.e., we assume that the thermal conductivity of the substrate

is large enough to maintain a constant surface temperature.
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Much theoretical effort has gone into studies of the effects of

continuous-wave lasers on adspecies.2 9 1 5  Experimentally, either

continuous-wave lasers have been used or pulsed lasers with a pulse duration

long compared to the relaxation times. 3'4'7'8'16'1 7 This means that for the

laser-adbond dynamics, the theory for continuous-wave lasers will also apply

for these pulsed lasers.

In this paper, we shall consider the effect of a short laser pulse on

the dynamics of an adatom. A short pulse is defined as a pulse with a

duration much shorter than the energy relaxation time (T1) of the excited

levels. Then, during the action of the pulse, the relaxation can be

neglected, and the effect of the pulse is to change the occupation

18
probabilities and coherences of the two coupled levels. Relaxation,

desorption and other possible surface processes occur after the pulse as

free evolution of the adspecies system under the initial conditions

determined by the effect of the pulse. We shall derive the equations of

motion describing the time evolution of the reduced density matrix of the

adbond for a series of equally spaced w-pulses.

Of particular interest is the comparison of the effect of a series of

short pulses with the effect of a continuous-wave laser. We shall do so by

calculating the average desorption for both cases. The key point here is

the criterion used for comparing both lasers. We shall use two criteria.

The first is to require that both lasers have the same average energy. The

second is that both lasers must lead to the same average energy flux into

the substrate. It will follow that these two criteria lead to completely

different requirements for the available power in both lasers.

.4,
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2. Pulsed Laser Adbond Dynamics

Consider an adsorbed atom or molecule irradiated by a laser beam with

frequency wL" Assume that the laser is in resonance with but one pair of

vibrational levels of the adbond. Then, for pulses short compared to the

energy relaxation times of the system, the time evolution is given by the

optical Bloch equations:1
8

dR1

dR 2
d -2 + 0p(t)R 3  (2.1)

dR3d-= -n%(t)R2.
dt p 2

Here Q p(t) = .10(t) is the time-dependent Rabi frequency; i(t) =

9o(t)cos(wLt) is the classical electric field amplitude of the laser, with

slowly-varying envelope 0 (t); jV is the transition dipole of the adbond;

A - L - (We - W ) is the detuning; and Aw and )' e are the energy of the

ground level and the excited level, respectively. The real-valued

quantities RI, R2 and R3 are defined by the populations of and coherences

between the two coupled levels in the rotating frame, according to

1 ge eg

R-2 i(P - P eg) (2.2)

R 3 Pe Pg"

For nonzero detuning, analytical solutions to Eq.(2.1) exist only for a

few special pulse shapes E0 (t).
18'19 For zero detuning the solution is

easily obtained. It does not depend on the pulse shape, but only on the

integral,

A& A
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t

O(t) f f dt'flp(t'). (2.3)

Since we are only interested in the populations after the pulse, the

integral in Eq.(2.3) can be extended over the complete pulse to obtain the

pulse area 0, which is then independent of time. In this paper only zero

detuning will be considered. The values of RI, R2 and R3 directly after the

18
pulse are,

RI(At) = Ro

R2 (At) = Rocos(e) + Rosin(0) (2.4)

R3 (At) = Rocos(O) - Rosin(0).

The start of the pulse is taken as the zero point of time. The pulse

0 0 0n
duration is given by At, and RI, R2 and are the values of RV, R2 and R3

directly before the pulse. From Eq.(2.4) it follows that maximum inversion

R3 is obtained for pulses with a value of 0 equal to w. Since we are

interested in an optimal effect, that is, the maximal value for P e we shall

consider only w-pulses in this paper.

Assume that the system is initially in thermal equilibrium, i.e., R-

0, R2 - 0 and R3 -R3 (eq). Then, after a -pulse, R1 - RI(At) and R2

R2 (at) are zero again, whereas R3 is changed to

R3(At) - -R3(eq). (2.5)

Between two consecutive pulses the adbond evolves freely through its

relaxation against the substrate degrees of freedom. The off-diagonal

elements of the reduced density matrix of the adbond decay exponentially to
15

zero, and because they were initially zero, they remain zero throughout.

The time evolution of the diagonal elements is described by the master

Iw
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equation

dPn(t) (

dt = {WknPk(t) - WnkPn(t)}, (2.6)

k

where the summation extends over all vibrational levels of the adbond,

including those not involved in the coupling to the laser. Wnk is the

rate constant for the transition from state n to state k, which can be

obtained, for example, through second-order perturbation theory. 15,20,21

_ The populations, P n(t), can be obtained by solving Eq. (2.5) under the

initial conditions given by the result of the pulse, Pn(at).

Consider the case where the adspecies is irradiated by a series of

equally-spaced i-pulses, with interval time tp . Then, after several pulses,

a quasi steady state will be reached, wherein the time evolution in each

interval t will be the same. The formal solution of Eq. (2.6) is?;: p

* (6t<t<t ),

P(t) - P(eq) + e [P(at) - P(eq))], (2.7)

where V is the matrix formed by the transition rates Wfnk, and has elements

*M M += k6 - w. (2.8)

k

P(t) is the vector formed by the occupation probabilities Pn(t), and P(eq)

is the equilibrium solution of Eq. (2.6). Of course P(eq) can be omitted

from Eq. (2.7). However, to clearly demonstrate the thermal and the laser

effect, we have written it as it is. In the quasi steady state, Eq. (2.7)

gives a relation between the P n(At) and P n(t ) of

P(t ) P(eq) + e ~ P[P(At) - P(eq)], (2.9)
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where we have used that exp[-WAt] - 1. Alternatively, the effect of the

pulse is known from Eq. (2.5), which gives

Pn(tp = n(At) = Pon (nxe,g)

n p n n

P (t Pe(At) - Po (2.10)
g p e g

P (tp) * P (At) - po
ep g e

Equations (2.9) and (2.10) together define the quantities P n(t p) and P n(At)

in terms of the system parameters Wnk and the time t p. They therefore

provide the initial condition to be used in Eq. (2.7). A schematic drawing

of the time evolution in the quasi steady state is given in Fig. 1.

3. Continuous-Wave Laser

Again, we consider a laser in resonance with only two vibrational

levels of the adbond. For a continuous-wave laser, the equation of motion

for the reduced density matrix of the 
adbond is20

dPn(t) - j{WkPk(t) - WkP(t)) (n 0 eg)

dt k

dt =fi (WkgPk(t) WgkPg(t)) + DCWR2(t )dt I

dPe(t) - (WkePk(t) - Wek~e~t)) }-jnaR 2(t) (3.1)
dt k

dR2(t) .
" ( W  + Wk )R2(t) + fl(P(t) - Pt)) - ARI(t)

dt e k gc 2 CW gk

dR2(t) = -l (Wek + Wgk )R ( t) + AR2(t),

dt
k

where the symbols have the same meaning as in Eqs. (2.1), (2.2) and (2.6),

and 0CW is the time independent Rabi frequency of the continuous wave laser.

For the rate constants Wnk, the expressions derived by Efrima et al. 2 1 or

Arnoldus et al. 15 can be used. Equations similar to Eq. (3.1) can be

,' '.-' ' te .,' ' ' ' '. • " " ." -"_ '. - . ." ." _ ,. '_ r -- , , ..
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obtained for the other coherences. They are not coupled to Eq. (3.1) and

therefore need not be considered here.

We are interested in the long-time behavior of the system, i.e., only

the steady-state solution of Eq. (3.1) is needed. Then the occupation

probabilities follow from

)WnkPn(-) = WkfnPk(a) (ne,g)

k k

gkPg(-) - WkgPk(H0) - 2 2 H - H (3.2)

k k eg
r

WkP(=) = WkePk(=) + 2 eg 2 w[pg () _ P ()]WkeIrg + 2A 2 CWge

k k eg

with reg = (W ek + Wgk) and Pn(-) denotes the steady-state value of Pn (t).

k

4. Pulsed Laser and Continuous-Wave Laser

To be able to compare the effects of a pulsed laser and the effects of

a continuous-wave laser, a criterion is necessary for comparing these two

lasers. One possibility is to require that the total average energy in the

continuous-wave laser and in the series of pulses be equal. Because the

intensity of a laser is proportional to the square of the electric field

amplitude, and the Rabi-frequency is proportional to the amplitude of the

electric field itself, this leads to the condition:

at

where it is assumed that the constants of proportionality are the same in

both cases. For a r-pulse we have also the condition,



---------- W U n r .-

8

at= = 7.. (4.2)

0

For a given average laser intensity, 2WO Eqs. (4.1) and (4.2) together give

a relation between the pulse duration At and the pulse interval time t .

For a square pulse, that relation is

2, At-tp =---2(4..
0Cw

Further restrictions are At<t p and At<<r -
, with r a typical relaxation

time. Therefore, Eqs. (4.1)-(4.3) severely limit the number of available,.

pulses for a given intensity.

A second criterion for comparing the effects of the two lasers is to

require that the average energy flow into the substrate (resonant heating)

' ' is equal in both cases, which is almost equivalent to requiring that the

total absorption from the lasers be equal.2  For the continuous-wave laser

the energy flow in the steady state is constant in time. Per unit of time

it is given by,2

d- - & L Ire CW1 ( P  () Pe ) "  
(4.4)

dt r2 + 262 CW g e
eg

For the pulsed laser the average absorption in the quasi steady state can

simply be obtained from Eq. (2.10) as

p p

Combination of these two equations gives

(- ( )= P [ - Pe()], (4.6)

p eg

pkI.



where we have set b - 0. The populations PO and P0 can be expressed in

terms of the rate constants and the interval time tp by use of Eqs (2.9) and

(2.10). The steady-state solutions P (-) and P (-) follow from Eq. (3.2)g e

and are a function of the transition probabilities and the Rabi frequency

5. Desorption

Desorption can be described by the addition of a loss term, -W P (t),nc n

to each of the master equations, Eqs. (2.6) and (3.1). Previously, the loss

rates were defined as the rate constant for the transition from the bound

21
state n to any of the continuum states of the adbond potential. However,

the results presented here are not restricted to such an interpretation.

Here we consider only slow desorption, which allows the use of the

populations for the steady-state and the quasi steady-state as determined by

Eqs. (3.1) and (2.6), respectively. With these occupation probabilities the

average rate of desorption is defined as,

tI~ f~dtWncPn(t), (5.1)

Ip
D = ( -t)fd

6 t n

where by the nature of the assumptions made earlier the integral can be

taken either from at to t or from 0 to tp. To obtain the average
p p

desorption for the pulsed laser and for the continuous-wave laser, the

respective functions P (t) have to be substituted in Eq. (5.1).
- n

The ratio between the pulsed-laser desorption and the continuous-wave-

laser desorption is a measure of the effectiveness of the one over the

other. This ration, j, can be written as

-.-7 . - - - . . . . - t r - . - . .* .
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Wnc P n(av)

n
=YWncPn(-O) (5.2)

n

where P n(av) is the average occupation probability for the pulsed irradiated

adbond given as

t

Pn(av) (t - At) J dt Pn(t), (5.3)

p at

and P n(-) is the steady state occupation probability for the continuous wave

laser case.

For a continuous-wave laser, the high-intensity limit is defined by

2

C W ' for the pulsed laser the high-intensity limit corresponds to

eg

rtp 0 . Note that for the idea of a pulsed laser to be valid, the latter

limit has to be taken under the condition t<<t p. It is easily shown that

the occupation probabilities, the energy flux and desorption assume

saturation values in the high-intensity limit. In the high-intensity limit

the occupation probabilities for the pulsed laser and for the continuous-

wave laser obey the same set of equations

IWnkPn 1knPk 
(5.4)

k k

P -P.
g e

For a pulsed laser, Eq. (5.4) refers to P n(av) - Pn (At), and they are valid

apart from a term of the order of rt . For a continuous-wave laser,

Eq. (5.4) refers to Pn(-), and they are valid apart from terms of the order

r 2rC W It follows immediately that the desorption for both situations



_- - -- -

is the same, i.e., I [Eq. (5.2)]. The saturation limit for the energy

flux is also the same, and can be written as

dEcw AE P
MW (W P VPn (5.5)

dt t L Wk " Wgk g"
k

This means that use of criterion 2 leads to p - 1 in the high-intensity

limit. Criterion I (equal average laser intensity) is defined by

[Eq. (4.3)]

re at M (2 -1 (5.6)

I 2  egtp r 2
eg

r At 2

One of our basic assumptions is eR <<I. Therefore, if we take r-

eg
r At -1
e( ) >>i, r t is about one. It follows that the saturation limit is
1 

2  eg p

reached for the continuous-wave laser at a much lower average intensity than

for the pulsed laser. It can be concluded that in the high-intensity limit

the pulsed laser is not more effective than the continuous-wave laser,

whereas from an energetic point of view the continuous-wave laser will

always be the best choice.

2

A weak continuous-wave laser is defined by - (<I. In that limit the

r 2geg

populations are different from their equilibrium values by a term proportional

to the laser intensity, i.e.,

2
P(C)= e(5.7)'..P{ n P n(eq) + C n r-2- .7

eg

'a-a-I.,..:..
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where C are constants. For (-)<<, we also have [Eqs. (4.3) and
n r 2

eg

(4.6)r egt p>>l. Then, the pulsed-laser-induced desorption can approximately

be evaluated from

Pn(av) - Pn(eq) + -- (P (At) - Pn(eq)). (5.8)

where r is in the range of the nonzero eigenvalues of V. The situation we

are interested in the situation where the laser gives a considerable

enhancement of the desorption. This means that the pure thermal desorption

can be neglected. An approximate expression for p is then

jWnc[ Pn(at) - Pn(eq) r 1
r t

n egp (5.9)

~jWQ 2ocIWnc Cn  
¢_W2

n 
r2

Since we do not know the constants Cni an estimate for V cannot be made.

However, it does follow from Eq. (5.9) that both criteria for comparing the

lasers [Eqs. (4.3) and (4.6)], lead to a p which is independent of the laser

power. For criterion 2 [Eq. (4.6)], p becomes simply,

[p(at) - Pn(eq)]

n (5.10)

I~nc Cn

n

that is, p is completely determined by system properties. For criterion I
r At

[Eq. (4.3)], a value less by a factor - -A<1 is obtained. It is:2

interesting to note that now p becomes larger if the pulse duration becomes

longer. Of course, the pulse duration is limited to values (r egAt) << 1.
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6. Two-Level System

A two-level system is of special interest because all the equations can

be solved analytically, and values for the different quantities are obtained

which depend only one relxitirn time r - (Wge + W )1. There are onlyare enl

two states, the ground state Ig> and the excited state 1e>, with the obvious

relation between the populations of

Pe(t) + Pg(t) - 1. (6.1)

For the pulsed-laser-irradiated adbond, it follows from Eqs. (2.7),

(2.9) and (2.10) that

[1 - 2Pe(eq)] -rt
Pe(t) - Pe(eq) + -rt e , (6.2)

[1 +e Pi

with the equilibrium population given by

W

Pe(eq) - -r
.  (6.3)

The average population of the upper level is [Eq. (5.3)]

-rt

P (av) - Pe(eq) + [1 - 2Pe(eq)] 1 - (6.4)
e e r -rt

P [l+e PJ

The average energy flow into the substrate is obtained as [Eq. (4.5)]

AiE
- - )wL r Pe(av) (6.5)

p

For the continuous-wave laser irradiation, the excited level population is,

" e(-) - Pe(eq) + [1 - 2Pe(eq)] 2 + a cw (6.6)

which is constant in time. The energy flow into the substrate is given by,

dE2
cw A 2- 0 1 - 2Pe(-)1. (6.7)
t F

Jq,
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The situation is considered where pure thermal desorption can be

neglected, i.e., the adspecies is stable without the laser. Then, for

desorption the first term in Eq. (6.2) and in Eq. (6.6) can be neglected,

and the ratio between pulsed-laser-induced desorption and continuous-wave-

laser-induced desorption becomes [Eq. (5.2)]

2 [1 - etp PI r2  2 (6.8)
-rt r2

[1 + e P+
I ~ ~~ r 2 rp t 68

2This implies that in the strong laser limit (rtp-.0 ; --%w~ , si

should be. Also, for C>>l but rt 0 0, it is easily shown that p<l, with vr2  P

decreasing for increasing rt . Using criterion 1, the ratio can be
p

written as,

-rt P 2 r2._ 22
(6.9)

IF 2rt 2 r2 2

rat 2 2 ado
which in the low-intensity limit leads to P <<l. For /rand/or

rt of the order unity, V starts increasing, until it reaches its saturation

value 1 in the high-intensity limit.

With the second criterion we obtain from Eqs. (6.5), (6.7) and (6.8)

that V equals unity, independent of the laser power used. Note that in this

case p is equal to the ratio of the quantum yield of desorption. Where the

latter is defined as the number of photons used for desorption divided by

the number of photons used for substrate heating.
2

7. Conclusions

In this paper we have studied the dynamics of an adspecies irradiated

by a series of equally-spaced n-laser pulses, in resonance with one pair of
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vibrational levels of the adbond. The equations describing the time

evolution of the reduced density matrix of the adbond are derived. A quasi

steady state is defined as the state wherein the time evolution in each

pulse interval is the same.

In particular, we have studied the laser-induced desorption and the

resonant heating of the substrate. A comparison is made between the effects

of a pulse train and of a continuous-wave laser. The essential point for

making this comparison is how to relate both lasers. Two criteria are given

which may serve for such a goal. The first is to require that both lasers

have equal average energy. It is then found that the ratio between the

pulsed- laser- induced desorpt ion and the continuous -wave -laser- induced

desorption [Eq. (5.2)] becomes proportional to rat (low intensity limit),

where At is the pulse duration. In other words, p~ can be made arbitrarily

small by decreasing the pulse duration. This result can be understood

easily if one realizes that for one pulse the energy content is proportional

to the intensity multiplied by the duration, whereas the total exciting

power is only proportional to the product of At with the square root of the

intensity [Eqs. (2.3) and (2.4)). This should be compared with the

continuous-wave laser case, where both the energy and the exciting power are

proportional to the intensity [Eq. (3.2)]. This observation leads to an

interesting prediction for the intensity dependence of the laser induced

desorption. Experimentally, it has been found that the laser-induced

desorption is proportional to some power, n, of the laser intensity, where n

is interpreted as the number of photons necessary for providing the required

7desorption energy. From the analysis here, it follows that for short

pulses an exponent of in will be found.
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The situation is considered where pure thermal desorption can be

neglected, i.e., the adspecies is stable without the laser. Then, for

desorption the first term in Eq. (6.2) and in Eq. (6.6) can be neglected,

and the ratio between pulsed-laser-induced desorption and continuous-wave-

laser-induced desorption becomes [Eq. (5.2)]

-rt or2 + D2
2 [1-e P [ n (6.8)
-rtp] rt 2

[l+ e pPCW

02~~~~~~CW...) ,I si

This implies that in the strong laser limit (rtp -+O 2 . as it

r2

should be. Also, for ->> but rt # 0, it is easily shown that V<1, with Vr 2

decreasing for increasing rt . Using criterion 1, the ratio can berp.

written as,

-rt F 2 + 2Q02
D - e 2w rAt (6.9)

-rt r2  22

which in the low-intensity limit leads to p a - <<l. For 2 /r and/or
2 CW

rt of the order unity, p starts increasing, until it reaches its saturation

value 1 in the high-intensity limit.

With the second criterion we obtain from Eqs. (6.5), (6.7) and (6.8)

that p equals unity, independent of the laser power used. Note that in this

case p is equal to the ratio of the quantum yield of desorption. Where the

latter is defined as the number of photons used for desorption divided by

the number of photons used for substrate heating.
2

7. Conclusions

In this paper we have studied the dynamics of an adspecies irradiated

by a series of equally-spaced i-laser pulses, in resonance with one pair of
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vibrational levels of the adbond. The equations describing the time

evolution of the reduced density matrix of the adbond are derived. A quasi

steady state is defined as the state wherein the time evolution in each

pulse interval is the same.

In particular, we have studied the laser-induced desorption and the

resonant heating of the substrate. A comparison is made between the effects

of a pulse train and of a continuous-wave laser. The essential point for

making this comparison is how to relate both lasers. Two criteria are given

which may serve for such a goal. The first is to require that both lasers

have equal average energy. It is then found that the ratio between the

pulsed-laser-induced desorption and the continuous-wave-laser-induced

desorption [Eq. (5.2)) becomes proportional to rAt (low intensity limit),

* where At is the pulse duration. In other words, p can be made arbitrarily

small by decreasing the pulse duration. This result can be understood

easily if one realizes that for one pulse the energy content is proportional

to the intensity multiplied by the duration, whereas the total exciting

power is only proportional to the product of At with the square root of the

intensity [Eqs. (2.3) and (2.4)). This should be compared with the

continuous-wave laser case, where both the energy and the exciting power are

proportional to the intensity [Eq. (3.2)J. This observation leads to an

interesting prediction for the intensity dependence of the laser induced

desorption. Experimentally, it has been found that the laser-induced

desorption is proportional to some power, n, of the laser intensity, where n

is interpreted as the number of photons necessary for providing the required
7

desorption energy. From the analysis here, it follows that for short

pulses an exponent of in will be found.
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The second criterion used is to require that the energy flux from the

laser into the substrate is the same in both cases. Then it is found that

in the low-intensity limit p becomes independent of the laser power. Of

course, to achieve this, a pulsed laser is required which is much more

intense than the continuous-wave laser.

In the high-intensity limit, all quantities assume saturation values.

It is shown that p - 1 in this case. From criterion l it follows that the

high-intensity limit is reached for much lower average power by the

continuous-wave laser than by the pulsed laser.

For a two-level system the equations can be solved analytically. It is

found that criterion 2 leads to p - 1 for all laser powers. In the low-

intensity limit criterion 1 gives .<<. For increasing intensity, p grows

gradually to one.

In this paper it has been shown that use of a pulsed laser instead of a

continuous-wave laser does not lead to a dramatic increase of resonant

desorption or resonant heating. Basically this can be understood from the

fact that both processes depend in some way on the average populations of

the excited vibrational levels. These cannot be enhanced by using a pulsed

laser. Other processes, like laser-induced thermal desorption via resonant

heating, depend on the average of some function (e.g., exponential) of the

occupation probabilities. It can be expected that then quite different

results will be obtained.
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FIGURE CAPTION

Fig. 1: Schematic drawing of the time evolution of the vibrational levelEl populations for a pulse sequence in the quasi steady state. Curve

(a) represents the inversion R3- P e - Pg9; curve (b) represents

P e+ P ; and curve (c) represents the population of any other

level n *e or g. The actual variation of the populations during

the pulse (O<t<At) depends on the pulse shape. For a two-level

system there are no levels n *e or g, and P e+ P - 1

-AV.
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